Contrasting programming techniques for summarizing voluminous SAS output
using the SAS Output Delivery System (ODS) (PROC FREQ as an example)

Stuart Long, Westat
Lawrence Park, Westat

ABSTRACT

SAS® ODS provides programmers with the ability to extract
selected information from a procedure and store it in datasets.
Such datasets can then be combined to summarize the results
from numerous procedures. The SAS Macro facility can be used
to execute and extract information from repetitively called SAS
procedures.

“Macro Variable Arrays” can simplify the extraction of information
from SAS procedures when identical or similar code is executed
repeatedly on a multitude of datasets and/or variables. This
paper describes Macro Variable Arrays and contrasts these with
other programming methods to obtain summary datasets from
ODS output.

Although PROC FREQ is used in this paper, these techniques
can serve as a blueprint for extracting and summarizing output
from other SAS procedures. This is an advanced tutorial intended
for SAS programmers knowledgeable with the SAS Macro facility.

INTRODUCTION

SAS can generate an enormous volume of output, such as when
procedures are run repeatedly in analyzing a large number of
variables. Often, only a selected, and possibly small, portion of
the output is of immediate interest. The SAS Output Delivery
System (ODS) provides a convenient mechanism for extracting
statistics for customized summarization. ODS can be used in
conjunction with macro processing to automate the generation
and presentation of summary data from SAS procedures. The
information presented in this paper serves as a blueprint for
summarizing statistics produced from SAS procedures executed
iteratively.

We use PROC FREQ as the example for this paper. The dataset
used consists of forty medical conditions, identified by the range
“medcond1” — “medcond40”, and 23 symptoms, identified by the
range “dizziness” -- “absentminded”. All variables are
dichotomous, where 0=No and 1=Yes. This assignment of 0 and
1 as the dichotomous values is necessary for proper execution of
the macros discussed in this paper. Our task is to produce a
summary dataset of frequencies, percentages, chi square
probabilities and odds ratios with confidence limits for 2x2 tables
crossing each outcome with each symptom. Once this summary
dataset has been produced, the user can create a summary table
using whatever reporting method within the SAS System that they
prefer, or the data can be exported for other processing.

Consider the following code:

PROC FREQ DATA=mydata;
TABLES (dizziness--absentminded) *
(medcondl-medcond40)
/ CHISQ RELRISK;
RUN;

The above PROC FREQ will produce 920 2x2 crosstabs and
associated statistics, and would generate 920 pages of output in
the SAS listing. By using SAS ODS iteratively within a macro, we
reduce the output to a 20 page summary report. In this paper we
present 3 different methods to do this using: 1) arrays of macro
variables, 2) call execute, and 3) by variable processing in PROC
FREQ. Each of these is described in detail in the sections that
follow, and the appendices provide the full code for each of the
methods.

METHOD 1: MACRO VARIABLE ARRAYS
Have you ever wished you could run code like this?

ARRAY symptom {*} dizziness--absentminded;
ARRAY disease {*} medcondl-medcond40;
DO i = 1 TO DIM(symptom) ;
DO j = 1 TO DIM(disease) ;
PROC FREQ DATA=mydata;
TABLES symptom (i) *disease(j)
/ CHISQ RELRISK;
RUN;
END;
END;

Since arrays must be defined and executed within a data step, we
see that the above code is syntactically incorrect. However, by
defining two sets of Macro variables, we can achieve the above
logic within the syntax requirements of the SAS system.

First, let's dissect the structure of a data step array.

DATA myset;
SET mydata;
ARRAY symptom {*} dizziness--absentminded;
total symptoms=0;
DO i = 1 TO DIM(symptom) ;
IF symptom(i)=1 THEN total symptoms+1l;
END;
RUN;

The name of the array is “symptom”.
The index is “i".
The array element is identified by “symptom(i)”.

For i=1, symptom(i) = dizziness.

In the example below we use a Macro Variable Array, which has a
nearly isomorphic relationship to the structure of a data step
array.

$LET symptoml=dizziness;
$LET symptom2=nervous;
$LET symptom3=absentminded;
$MACRO arrays;
$DO i = 1 $TO 3;
PROC FREQ DATA=mydata;
TABLES &&symptomé&i*medcondl;
RUN;
$END; /*%$DO Loop*/
$MEND arrays;

The root name of the array is “symptom”.
The index is “i".
The array element is identified by “&&symptom&i”.

For i=1, &&symptom&i = dizziness.

All items in the Macro Variable Array can be mapped to the data
step array, except the “&&” syntax controls the final resolution of
the Macro Variables in the array. The advantage of the Macro
Variable Array is that the programmer can create iterative code,
which executes outside of the data step on a list of variables in a
manner similar to iterative code that is executed on a list of
variables within a data step.

CREATING MACRO VARIABLE ARRAYS

Below are three methods to create Macro Variable Arrays within a
program.

Method 1: %LET is used to assign values to macro variables. By
incrementing the index, or suffix, of the names of macro variables
to which elements of the array are assigned, you can create a
usable Macro Variable Array. Below we create an array of 23
symptoms, where the index is incremented by one, for each
successive element assigned to the array:

$LET row_1 =dizziness ; SLET row 2 =nervous ;
$LET row 3 =speechProb ; %LET row_4 =nausea H
$LET row_5 =depression ; %LET row_ 6 =lowEnergy;

$LET row_7 =tasteChange ; %LET row_8 =sweating ;
$LET row_ 9 =appetitelLoss; $LET row_l0=headache ;

$LET row ll=fastHeart ; %SLET row_l2=numbHands;
$LET row_l3=badBalance ; %LET row_l4=irritable;
$LET row_l5=unConscious ; %LET row_lé6=trembling;

$LET row_l7=blurredSight; %LET row_l8=insomnia ;
$LET row_l9=concentrate ; 3%LET row_20=armsWeak ;
$LET row_2l=nightVision ; %LET row_ 22=twitching;
$LET row_23=absentminded;

The Macro Variable Array with elements row_1 to row_23
contains the values dizziness - - absentminded.

Method 2: If your values are already defined with elements that
contain incremental suffixes, you can use a macro to make
assignments:

$MACRO assign(__ root, n);
$DO i = 1 %TO & _n;
$GLOBAL col &i;
$LET col &i=& rooté&i;;
%END;
$MEND assign;
%assign (medcond, 40)

The above code generates 40 %LET statements which assign the
40 elements in medcond1 - medcond40 to 40 macro variables in
the range of col_1 to col_40. It is identical to executing the
following code;

$LET col 1 =medcondl ; S%LET col_2 =medcond2 ;
SLET col_3 =medcond3 ; S%LET col_4 =medcond4 ;
$LET col_5 =medcond5 ; S%LET col 6 =medcond6 ;
$LET col 7 =medcond7 ; %LET col 8 =medcond8 ;
$LET col 9 =medcond9 ; S%LET col_10=medcondlO;

SLET col_ll=medcondll; S%LET col_l2=medcondl2;
$LET col_13=medcondl3; S%LET col_ l4=medcondl4;
$LET col 15=medcondl5; $%LET col lé6=medcondlé6;
$LET col_17=medcondl7; S%LET col_18=medcondl8;
$LET col_19=medcondl9; S%LET col_ 20=medcond20;
SLET col_2l=medcond2l; S%LET col_22=medcond22;
$LET col_23=medcond23; $%LET col_ 24=medcond24;
$LET col 25=medcond25; $%LET col 26=medcond26;
$LET col_27=medcond27; S%LET col_28=medcond28;
SLET col_29=medcond29; S%LET col_30=medcond30;
$LET col_31l=medcond31l; $%LET col_32=medcond32;
$LET col 33=medcond33; $%LET col_ 34=medcond34;
$LET col_35=medcond35; S%LET col_36=medcond36;
SLET col_37=medcond37; S%LET col_38=medcond38;
$LET col_39=medcond39; $%LET col_40=medcond40;

Method 3: Although it requires less execution time to assign
values to a macro array outside of a data step by using %LET
statements, it may be preferable to make the assignments within
a data step with the aid of data step arrays.

DATA NULL_;
SET mydata;
ARRAY symptoms {*} dizziness--absentminded;
ARRAY diseases {*} medcondl-medcond4o0;
CALL SYMPUT ("dim row",DIM(symptoms)) ;
CALL SYMPUT ("dim col",DIM(diseases)) ;
DO i = 1 TO DIM(symptoms) ;
CALL SYMPUT ("row " || LEFT(i),
VNAME (symptoms (1))) ;

END;
DO i = 1 TO DIM(diseases);
CALL SYMPUT("col " || LEFT(i),
VNAME (diseases(i))) ;
END;
STOP;
RUN;

In the above data step, CALL SYMPUT is used to make
assignments of values to the macro variables "row_1 — row_23"
and "col_1 — col_40". In the statement

CALL SYMPUT ("row " || LEFT (i),
VNAME (symptoms (1))) ;

the first argument in the CALL SYMPUT is the name of the macro
variable, and the second argument contains the variable that will
be assigned to the macro variable. Where i= 1:

"row " || LEFT(i) becomes "row_ 1"
VNAME (symptoms (i)) becomes "dizziness"

This statement resolves to:
CALL SYMPUT ("row_1","dizziness");

This is similar to making the following assignment outside of a
data step using %LET:

$LET row_l=dizziness;

Once the code for the data step in example 3 is executed, Macro
Variable Arrays are generated which are equivalent to the arrays
created in examples 1 and 2. In addition, we have created macro
variables containing the dimensions of these Macro Variable
Arrays.

USING MACRO VARIABLE ARRAYS TO
EXECUTE PROCEDURES ITERATIVELY

The two Macro Variable Arrays created in the previous data step
can be used outside of a data step as follows:

$MACRO runfreq(dimrow,dimcol,dset) ;
$DO i = 1 $TO &dimrow;
$DO j = 1 $TO &dimcol;
PROC FREQ DATA=&dset;
TABLE &&row &i * &&col &jJ
/ CHISQ RELRISK;
RUN;
$END; /*%DO Loop j*/
%END; /*%$DO Loop i*/
$MEND runfreq;

$runfreq(&dim row, &dim col,mydata)

We know that &dim_row = 23 and &dim_col = 40. Thus the
above macro, “runfreq” will generate 23 x 40, or 920 PROC FREQ
2x2 tables. The first three times through the %DO Loop will
generate the following SAS code:

PROC FREQ DATA=mydata;

TABLE dizziness*medcondl / CHISQ RELRISK;
RUN;
PROC FREQ DATA=mydata;

TABLE dizziness*medcond02 / CHISQ RELRISK;
RUN;
PROC FREQ DATA=mydata;

TABLE dizziness*medcond03 / CHISQ RELRISK;
RUN;

SAS PROCEDURE DATA OBJECTS AND ODS
TRACE

The statistics and other information generated by SAS procedures
are held internally in several data objects. The components of
these objects and their names are specific to each procedure.
The ODS TRACE statement gives the programmer a method to
identify the names of the results objects that are generated by a
given procedure. The following code shows how to use the ODS
TRACE statement to identify the names of the data objects
generated by PROC FREQ.

ODS TRACE ON;
PROC FREQ DATA=mydata;
TABLES dizziness*medcondl / CHISQ RELRISK;
RUN;
ODS TRACE OFF;

FIGURE 1: SAS Log Listing for TRACE Statement

9 ODS TRACE ON;

10 PROC FREQ DATA=mydata;

11 TABLES dizziness*medcondl /CHISQ ELRISK;
12 RUN;

Output Added:

Name : CrossTabFreqgs

Label: Cross-Tabular Freq Table

Data Name:
Path:Freq.Dizziness by medcondl.CrossTabFregs

Name : Chisqg

Label: Chi-Square Tests

Template: Base.Freqg.Chisqg

Path: Freqg.Dizziness_by medcondl.ChiSqg

Name : FishersExact

Label: Fisher's Exact Test

Template: Base.Freqg.ChisgExactFactoid

Path: Freqg.Dizziness by medcondl.FishersExact

Name : RelativeRisks

Label: Relative Risk Estimates

Template: Base.Freq.RelativeRisks

Path: Freq.Dizziness_ by medcondl.RelativeRisks

NOTE: There were 2529 observations read from
the data set mydata.

NOTE: PROCEDURE FREQ used:
real time 0.44 seconds
cpu time 0.01 seconds

13 ODS TRACE OFF;

Four output objects are generated by this PROC FREQ, based on
the options that the programmer has requested. Figure 1 shows
how the SAS Log identifies each of these as they are added to
the SAS listing.

Figure 2 shows the default SAS listing from the PROC FREQ call.
Referring back to Figure 1, it is easy to match the components of
the listing to their names generated by the ODS TRACE request.
As noted in the introduction, our task is to summarize column
frequencies and percents, the Mantel-Haenszel chi square
probability, and the odds ratios with confidence limits. These
statistics are the 8 highlighted items in Figure 2. The problem is
to extract only these components from the much larger set of
information printed

FIGURE 2: PROC FREQ Output

The Frequency Procedure
Table of Dizziness by medcondl

Dizziness (Dizziness episodes)
medcondl (Diagnosed with Arthritis)

Frequency

Percent

Row Pct

Col Pct 0) No 1) Yes Total

0) No 1698 79 1777
67.14 3.12 70.26
95.55 4.45
71.11 56.03

1) Yes 690 62 752
27.28 2.45 29.74
91.76 8.24
28.89 43.97

Total 2388 141 2529

94 .42 5.58 100.00

Statistics for Table of Dizziness by medcondl

Statistic DF Value Prob

Chi-Square 1 14.4856 0.0001

Likelihood Ratio Chi-Square 1 13.5495 0.0002

Continuity Adj. Chi-Square 1 13.7729 0.0002

Mantel-Haenszel Chi-Square 1 14.4799 0.0001

Phi Coefficient 0.0757

Contingency Coefficient 0.0755

Cramer's V 0.0757

Fisher's Exact Test

Cell (1,1) Frequency (F) 1698

Left-sided Pr <= F 0.9999

Right-sided Pr >= F 1.587E-04

Table Probability (P) 8.009E-05

Two-sided Pr <= P 2.813E-04

Estimates of the Relative Risk (Rowl/Row2)

Type of Study Value 95% Confidence
Limits

Case-Control (Odds Ratio) 1.93 1.36 2.72
Cohort (Coll Risk) 1.04 1.01 1.06
Cohort (Col2 Risk) 0.53 0.39 0.74
Sample Size = 2529

GENERATING ODS OUTPUT DATASETS

The SAS ODS OUTPUT statement allows the programmer to
save the results from procedure objects to datasets. We use this
to extract the desired results from PROC FREQ into three
datasets. In the code below, PROC FREQ is executed within two
nested %DO loops inside a macro, and the macro “onerec” is
called to further process the output datasets.

$MACRO runfreqg(dimrow =
dimcol = ,
dset = ,
out = ,

)
%$DO i = 1 $TO &dimrow;
$DO j = 1 $TO &dimcol;

ODS OUTPUT CrossTabFreqgs = _ ctab
Chisq = _ chi
RelativeRisks = _ rrisk;

PROC FREQ DATA=&dset;
TABLES &&row_&i * &&col &j
/ CHISQ RELRISK;

RUN;
ODS OUTPUT CLOSE;
$onerec (row=&&row_&i, col=&&col_ &j)

$END; /* $DO Loop j */

$END; /* $DO Loop i */
$MEND runfreq;

FIGURE 3: PROC PRINT of ODS Datasets

Dataset=__ctab
R C
d m F o o
i e r w 1
b d _ e P P P M
4 c T a e e e i
i o T A u r r r s
n n Y B e (e (e c s
o] e d P L n e e e i
b s 0 E E c n n n n
s s 1 L Y t t t g
1 0) No 0) No 11 1 1698 67.14 95.55 71.10
2 0) No 1) Yes 11 1 79 3.12 4.44 56.02
3 0) No .10 1 1777 70.26 . .
4 1) Yes 0) No 11 1 690 27.28 91.75 28.89
5 1) Yes 1) Yes 11 1 62 2.45 8.24 43.97
6 1) Yes .10 1 752 29.73
7 0) No 01 1 2388 94.42
8 1) Yes 01 1 141 5.57 . . .
9 00 1 2529 100.00 . . 0
Dataset=__ chi
Obs Statistic DF Value Prob
1 Chi-Square 1 14.48 0.0001
2 Likelihood Ratio Chi-Square 1 13.54 0.0002
3 Continuity Adj. Chi-Square 1 13.77 0.0002
4 Mantel-Haenszel Chi-Square 1 14.47 0.0001
5 Phi Coefficient _0.07 _
6 Contingency Coefficient _0.07 .
7 Cramer's V _0.07 _
Dataset=__ rrisk
Obs StudyType Value Lower Upper
CL CL
1 Case-Control (Odds Ratio) 1.93 1.36 2.72
2 Cohort (Coll Risk) 1.04 1.01 1.06
3 Cohort (Col2 Risk) 0.53 0.39 0.74

The datasets generated by the ODS OUTPUT statements are
printed in Figure 3. The statistics we want are high-lighted. In the
macro “onerec” (below), these statistics are extracted from the
three datasets and combined into a one-record summary dataset.
This summary dataset is then appended to a cumulative summary
dataset, which will contain observations for all 920 2x2 CrossTabs
executed by the original macro call. The programmer can then
generate a summary report using any facility within SAS or export
the data to any external reporting software desired. The following
code for the macro “onerec” is continuous from the %MACRO
statement to the %MEND statement:

$MACRO onerec (row=, col=);

First, the statistics to keep in the summary dataset are specified.

DATA _ onerec (KEEP = row_var col var
n coll n _col2
p_coll p_col2
Prob OddsRatio
LowerCl UpperCl) ;

LENGTH row_var col var $ 32;
row _var = VNAME (&row) ;
col var = VNAME (&col) ;

Second, the information from the dataset created from the
CrossTabFreqgs table __ ctab are extracted into the one-record
summary dataset (__onerec). The SET statement reads the
__ctab dataset and identifies two records, based on the condition
specified in the WHERE clause, from which frequencies and
percents will be kept for the one record output by the DATA Step,.
The Frequency and ColPercent values for the two rows of __ctab
are stored in different elements of the n_col and p_col arrays:

ARRAY n _col (0:1);
ARRAY p col (0:1);
DO UNTIL (eof ctab);
SET _ ctab (WHERE = (&row = 1 AND
&col IN (0 1)))
END = eof ctab;
n col [&col] = Frequency;
p col [&col] = ColPercent;
END;

Third, the record in __chi containing the probability for the Mantel-
Haenszel Chi-Square statistic is output to the __onerec dataset:

DO UNTIL (eof chi);
SET _ chi (WHERE =
(SUBSTR (statistic,1,6) = "Mantel"))
END = eof chi;
END;

Finally, the Case-Control Odds Ratio and confidence limits are
extracted from the Relative Risks dataset, “__rrisk”:

DO UNTIL (eof rrisk);
SET _ rrisk end = eof_rrisk;
IF (substr(studytype, 1 , 4) = "Case")
THEN OddsRatio = Value;

END; RUN;

Once all the statistics from the three output datasets have been
read into the _ onerec dataset, they are appended to a
cumulative summary dataset (specified by the macro variable
&out):

PROC APPEND BASE = &out DATA = _ onerec
FORCE; RUN;
$MEND onerec;

METHOD 2: CALL EXECUTE
Let's reexamine the code presented at the start of this paper:

ARRAY symptom {*} dizziness--absentminded;
ARRAY disease {*} medcondl-medcond40;
DO i = 1 TO DIM(symntom) ;
DO j = 1 TO DIM(disease) ;
PROC FREQ DATA=mydata;
TABLES symptom (i) *disease(j)
/ CHISQ RELRISK;
RUN;
END;
END;

As noted, this code is syntactically incorrect. However, SAS
procedure calls can be generated within Data Steps by using the
CALL EXECUTE routine. Using this, we can run the PROC
FREQ iteratively within nested Data Step DO Loops with the code
below. The code generated by the repeated use of CALL
EXECUTE is stored in a temporary buffer and is executed after
the completion of the data step.

DATA NULL_;
SET mydata;
ARRAY symptom {*} dizziness--absentminded;
ARRAY disease {*} medcondl-medcond02;
DO i = 1 TO DIM(symptom) ;
row=VNAME (symptom (1)) ;
DO j = 1 TO DIM(disease) ;
Ccol=VNAME (disease(j)) ;
CALL EXECUTE ('PROC FREQ DATA=mydata;' ||

'"TABLES ' || row || '*' ||
col || ' / CHISQ RELRISK;' ||
' RUN;');
END;
END;
STOP;

RUN;

To make use of the ODS OUTPUT datasets described in the
previous section, we rewrite the above code to have CALL
EXECUTE invoke the macro “runfreq” instead of a direct call to
PROC FREQ. The following code will generate 920 macro calls,
which are executed after the completion of the Data Step.

DATA NULL_;
LENGTH rowvar colvar $ 32;
SET mydata;
ARRAY col (*) &colvars;
ARRAY row (*) &rowvars;
DO i = 1 TO DIM (col);
colvar = VNAME (col[i]);
DO j = 1 TO DIM (row) ;
rowvar = VNAME (rowl[j]);

CALL EXECUTE ('%runfreq (DATA = mydata'
|| ™, row = " || rowvar
[| », col =" || colvar
|| " , base = summary)"
)i
END;
END;
STOP; RUN;

The first time through the nested DO Loops, the following macro
call will be generated at the end of the Data Step:

$runfreq (data = mydata
, row = dizziness
, col = medcondl
, base = summary)

The Macro Variable Array version of this program uses two
nested %DO Loops to govern the iterative processing of the 920

PROC FREQs. In this version, the iteration is controlled by Data
Step DO Loops, which generate the macro call using the CALL
EXECUTE statement. The row and column variables in the
TABLES statement of the PROC FREQ are standard macro
variables that are passed as parameters of the macro call; these
parameters replace the Marco Variable Arrays used in the
previous method. Below is the revised version of the macro
runfreq for use with the CALL EXECUTE statement.

$MACRO runfreq (data = ,
row = rowvar ,
col = colvar ,

base =
)i
ODS OUTPUT CrossTabFreqgs = _ ctab
Chisq = _ chi
RelativeRisks = _ rrisk;

PROC FREQ DATA = &data;
TABLES &row * &col / CHISQ RELRISK;
RUN;
ODS OUTPUT CLOSE;
%onerec (row=&row, col=&col) ;
$MEND runfreq;

The “onerec” macro used here is identical to the one written for
the Macro Variable Array version in the previous section.

NOTE: In SAS Version 8.2, using CALL EXECUTE to generate
large amounts of code (> 1000 lines) can result in truncation and
random failure to execute code. For details and a patch, see
http://support.sas.com/techsup/unotes/SN/005/005243.html.

METHOD 3: A SINGLE PROC FREQ

The third method uses an entirely different strategy for solving the
task. Here, we use a data step to collect the counts of the cells in
each 2x2 table into a single 3-dimensional matrix and process this
through a single call to PROC FREQ.

For any given cross-tabulation, each observation on a dataset
contributes a count of 1 to a single cell of the table. We use this
fact and build a single frequency table for all 23 x 40 cross-tabs in
a 3-dimensional array of dimension 23 x 40 x 4. The first 2
dimensions index on the 23 row and 40 column variables, and the
third dimension indexes the counts of the 4 cells in the 2x2 cross-
tabs for the row and column variables. The values in this array
are assigned through two nested DO loops. Inside these loops,
one of the 4 cell counters is incremented, depending on the
values of the row and column variables. The following code
performs this task.

RETAIN count 0 ;

ARRAY col) &colvars ;

ARRAY _ row) &rowvars ;

ARRAY count (&dimcol , &dimrow , 0:3);

(*
(*

DO i = 1 TO DIM (__Col)
DO j = 1 TO DIM (__row)
count [i , j , 2* col[i]l + _ rowl[jl]l + 1;
END ;
END ;

Therefore, if row variable “NAUSEA” (symptom 4) has the value 0
and column variable “MEDCONDS5” has the value 1, then the
code within the DO loops resolves to:

count[5,4,(2*1+0)] +1;
or
count[5,4, 2]+1;

which increments the appropriate counter for the two variables
and their combined values.

Examine this from the perspective of a single 2x2 table.

nausea (Nausea episodes)
medcond5 (Diagnosed with Angina)

Frequency

Percent

Row Pct

Col Pct 0) No 1) Yes

0) No increment
this cell
count by 1

1) Yes

When the final record of the dataset is read, each of the 3680 cell
counts is output to a new dataset. This dataset is then processed
in the macro “odsmodule”, using a single PROC FREQ with a
WEIGHT statement to generate the desired statistics.

$MACRO buildset (dset) ;
DATA g (KEEP = col row freqg colval rowval) ;
LENGTH col row $ 32 ;
SET &dset END = eof ;
RETAIN count 0 ;

ARRAY _ col (*) &colvars ;
ARRAY row (*) &rowvars ;
ARRAY count (&dimcol , &dimrow , 0:3);
DO i = 1 TO DIM (_ col) ;
= 1 TO DIM (__row) ;
_count [1i , j , 2 * coll[i]l + _ row([jl]
+ 1;

END ;
IF eof THEN DO ;
DO i =1 TO DIM (_ col) ;
col = VNAME (_ col [i]) ;
DO j = 1 TO DIM (__row)
row = VNAME (_ row[j]) ;
DO k = 0 TO 3 ;
freq = count [1
colval = INT (k
rowval = MOD (k
OUTPUT ;
END ;
END ;
END ;
END ;
RUN ;
%$odsmodule
$MEND buildset;

;3
/2
;2 ;

$MACRO odsmodule;

ODS OUTPUT CcrossTtabFregs = _ ctab
Chisq __chi
RrelativeRrisks = _ rrisk;

PROC FREQ DATA = g ;

BY col row NOTSORTED;
TABLE rowval * colval / CHISQ RELRISK ;
WEIGHT freq ;

RUN ;

ODS OUTPUT CLOSE ;

RUN;

$summaryset *see Appendix 3;

$MEND odsmodule;

DISCUSSION OF THE THREE METHODS

We have presented 3 solutions to summarize numerous
frequency cross-tabs. All three make use of macros and ODS
output datasets to extract selected pieces of the output to
efficiently process large volumes of information.

The first 2 solutions are very similar; both use looping to iteratively
run PROC FREQ, which generates the desired statistics. The
Macro Variable Array version uses straightforward macro coding
in which nested %DO loops control processing over arrays of
macro variables. In contrast, the CALL EXECUTE version uses a
data step to build a sequence of SAS statements to run; here,
DO loops direct processing of variables in Data Step arrays. The
PROC FREQ calls are executed after the completion of the Data
Step. An advantage of the Macro Variable Array version is that
the variables analyzed may be a mixture of numeric and
character. The code in our CALL EXECUTE version would have
to be modified somewhat to accommodate mixed variable types.

Both of these methods provide a blueprint for designing other,
possibly more complex, summarizations from analyses in SAS.
They are easily tailored to process output from procedures other
than PROC FREQ and can be adapted to combine and
summarize results from multiple procedures’.

The third method we presented, using a single PROC FREQ,
cannot be generalized to other procedures, but provides an
interesting contrast to the other 2 solutions. It has the potential
advantage in run time; instead of executing 920 PROC FREQs,
only one PROC FREQ is run. Thus, if execution time is a
significant concern, this method would be preferred for processing
frequency tables.

Code for all three methods is presented in appendices one to
three. These will be of interest to a programmer. An end user
does not necessarily care about the inner workings of the macros,
but may be concerned only with obtaining the end product, the
summary dataset. Appendix four shows how the programmer
can provide the user with a simple interface to run these macros
with a minimum of information. To use the macro, the user needs
to provide 1) the name of the dataset to be analyzed, 2) the name
of the summary dataset to be produced, and 3) the names of the
row and column variables. Appendix five provides code to
produce the summary dataset shown in Figure 5. If the user only
wants the summary dataset, then s/he can use the output dataset
(Figure 4) as needed.

CONCLUSION

ODS provides the SAS programmer with an efficient method for
creating summary datasets from voluminous output. Different
SAS programming techniques can be used to take advantage of
the ODS utility, depending on the coding preferences of the
programmer. The task presented in this paper requires a fair
amount of knowledge about the SAS Macro facility on the part of
the programmer. However, the end user does not have to be
concerned with these programming details and can be provided a
simple way to use these macros. Once the final summary dataset
has been created, the end user can generate a report with the
method provided by the programmer, or with any other SAS
reporting facility, or external method if additional reporting needs
are required.

DISCLAIMER: The contents of this paper are the work of the

author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

ACKNOWLEDGEMENTS

The authors would like to thank lan Whitlock for his assistance
and review of the methods and coding.

REFERENCES

1. Long, S., Darden, R. (2003). A MACRO Using SAS ODS to
Summarize Client Information from Multiple Procedures. Proceedings

of the 28" Annual SAS Users Group International Conference.

CONTACT INFORMATION

Stuart Long (long3@niehs.nih.gov)
Westat

1009 Slater Road, Suite 110
Durham, NC 27703

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

APPENDIX 1: The Macro Variable Array method.

$MACRO runfreq(dset) ;
%$IF $SYSFUNC (EXIST (&out)) $THEN $%DO;
PROC DATASETS;
DELETE &out;
QUIT; RUN;
END;
DO j = 1 %TO &dimcol;
DO i = 1 %$TO &dimrow;
PROC DATASETS; DELETE _ ctab _ chi _ rrisk;

o°

o°

°
3

QUIT; RUN;

ODS LISTING CLOSE;

ODS OUTPUT CrossTabFregs = _ ctab
ChisSg = _chi
RelativeRisks = _ rrisk;

PROC FREQ DATA=&dset ORDER=INTERNAL;
WHERE &&row &i>.z AND &&col &j>.z;
TABLES &&row_&i * &&col &j

/ CHISQ RELRISK; RUN;

ODS OUTPUT CLOSE;

ODS LISTING;

%onerec (row = &&row &i ,

col = &&col &j ,
rlab = %NRBQUOTE(&&rlab_&i) B
clab $NRBQUOTE (&&clab_ &3j)
)i
%END; /*__i $LOOP*/
$END; /*_j $LOOP*/
$MEND runfreq;

$MACRO onerec (row S
col ,
rlab = ,
clab =) ;

DATA _ onerec (KEEP=row var col_var n coll
n_col2 p_coll p_col2
col_label row_label
coll val col2 val Prob
OddsRatio LowerCl UpperCl) ;

LENGTH row_var col_var S 32
col_label row label $ 50;

rowval = &row;

colval = &col;

row_var = "&row";

col_var = "&col";

col label = "&clab";

row_label = "&rlab";

coll_val = 0;

col2_val = 1;

ARRAY n col (0:1);
ARRAY p col (0:1);
DO UNTIL (eof ctab);
SET __ctab (WHERE= (&row=1 AND &col IN (0 1)))
END = eof ctab;
n col [&col] = Frequency;
p _col [&col] = ColPercent;

END;

IF (EXIST(“__chi”)) THEN DO;

DO UNTIL (eof_chi);
SET __Chi (WHERE= (SUBSTR (statistic,1,6)

= "Mantel"))
END = eof chi;

END;

END; ELSE Prob = .;

OddsRatio = .;

LowerCL = .;

Uppercl = .

IF (EXIST(“__rriSk")) THEN DO;
DO UNTIL (eof rrisk);

SET _ rrisk END = eof rrisk;
IF (substr(studytype,1l,4)="Case") THEN DO;
OddsRatio = value;

lcl = LowerCL;
ucl = UpperCL;
END;
END;
LowerCL = 1lcl;
UpperCL = ucl;
END;

FORMAT coll
LABEL

_val col2_val _ny.;

col_var = "Name of Column Variable"
col_label = "Label of Column Variable"
coll val = "lst Value of Col Variable"
col2 val = "2nd Value of Col Variable"
row_var = "Name of Row Variable"
row_label = "Label of Row Variable"
n coll = "Frequency of Column 1 cell"
n_col2 = "Frequency of Column 2 cell"
p_coll = "Percent of Column 1 cell"
p_col2 = "Percent of Column 2 cell"
Prob = "Mantel-Haenszel Chi-Square"
OddsRatio = "Odds Ratio"
LowerCL = "95% Lower Confidence Limit"
UpperCL = "95% Upper Confidence Limit";
RUN;

i
PROC APPEND
RUN;

$MEND onerec;

BASE = &out DATA = _ onerec FORCE;

$MACRO freginfo (data = &syslast

%$LET data

%$LET report

, out =
, rowvars
, colvars
, report =)i
= &data; *force evaluation of DATA;
= %UPCASE (&report) ;

DATA _NULL_;
SET &data;

ARRAY row {*} &rowvars;

ARRAY col {*} &colvars;

CALL SYMPUT ("dimrow",DIM(__row)) ;
CALL SYMPUT ("dimcol",DIM(_ col));
DO i = 1 TO DIM(__ row) ;

CALL SYMPUT ("row " || LEFT(i),
VNAME (__row(i)));
CALL SYMPUT ("rlab_" || LEFT (i),

VLABEL (__row(i)));
END;
DO j = 1 TO DIM(_ col);
CALL SYMPUT ("col_" || LEFT(J),
VNAME (__col(j)))
CALL SYMPUT ("clab " || LEFT(
VLABEL (__col(3j))

i)
)i
END;
STOP;
RUN;
$runfreq (%$STR (&data)) ;
%IF &report = YES $THEN
$print_ summary table (out = &out) ;
$MEND freginfo;

APPENDIX 2: The CALL EXECUTE method. APPENDIX 3: The Single PROC FREQ method.

$MACRO runfreq (data = , $MACRO buildset (dset) ;
row = rowvar , DATA g (KEEP = col_var row_var freq colval
col = colvar , rowval col label row label) ;
clab = clabel , LENGTH col_var row var $ 32 ;
rlab = rlabel , SET &dset END = eof ;
base =) ; ARRAY _ col (*) &colvars ;
PROC DATASETS; DELETE _ ctab _ chi _ rrisk; ARRAY _ row (*) &rowvars ;
QUIT; RUN; ARRAY count (&dimcol , &dimrow , 0:3) ;
ODS LISTING CLOSE; RETAIN count 0 ;
ODS OUTPUT CrossTabFregs = _ ctab DO i =1 TO DIM (_ col) ;
Chisqg = _chi DO j = 1 TO DIM (_ row) ;
RelativeRisks = _ rrisk; count[i, j, 2*_ col[il+_ row([jl] + 1;
PROC FREQ DATA = &data ORDER=INTERNAL; END ;
TABLES &row * &col / CHISQ RELRISK; END ;
RUN; IF eof THEN DO ;
ODS LISTING; DO i =1 TO DIM (_ col) ;
ODS OUTPUT CLOSE; col var = VNAME (_ col [i]) ;
%$onerec (row = &row , col label = VLABEL (_ col [i]) ;
col = &col , DO j = 1 TO DIM (_ row) ;
rlab = &rlab, row var = VNAME (_ row[j]) ;
clab = &clab); row_label = VLABEL (_ row [j]) ;
*NOTE: for Macro "onerec" see Appendix 1.; DO k = 0 TO 3 ;
$MEND runfreq; fregq = count [i, §J , k1 ;
colval = INT (k / 2) ;
$MACRO freginfo (data = rowval = MOD (k , 2) ;
, out = OUTPUT ;
, rowvars = END ;
, colvars = END ;
, report =); END ;
$LET data = &data ; *force evaluation of DATA; END ;
$LET report = $UPCASE (&report) ; RUN ;
%$IF %$SYSFUNC (EXIST (&out)) $%$THEN $%DO; %$odsmodule
PROC DATASETS; $MEND buildset;
DELETE &out;
QUIT; %$MACRO odsmodule;
RUN; QUIT;
%END; ODS LISTING CLOSE ;
DATA _NULL_; ODS OUTPUT CrossTabFregs =__ ctab
LENGTH rowvar colvar $ 32; ChiSg = chi
SET &data; RelativeRisks =_ rrisk;
ARRAY col (*) &colvars; PROC FREQ DATA = g ;
ARRAY row (*) &rowvars; BY col_var row_var col_label row_label
DO i = 1 TO DIM (col); NOTSORTED ;

colvar = VNAME (coll[i]); TABLE rowval * colval / CHISQ RELRISK ;

[
[

]
clabel = VLABEL(coll[i]); WEIGHT freq ;
DO j = 1 TO DIM (row) ; RUN ;
rowvar = VNAME (rowl[j]); ODS OUTPUT CLOSE ;
rlabel = VLABEL(row[]j]); ODS LISTING ;
CALL EXECUTE $summaryset
('$runfreqg(data = &data ' || $MEND odsmodule;
", row = " || rowvar ||
", col =" || colvar || $MACRO summaryset;
', clab = $NRBQUOTE(' || clabel || ")' || DATA _ ¢ (KEEP=row var col var n_coll n_col2
', rlab = %NRBQUOTE(' || rlabel || ')' || p_coll p_col2 col label
", base = &out)" row_label coll_val col2 val);
) ; ARRAY n_col (0:1) ;
END; ARRAY p col (0:1) ;
END; SET _ ctab (WHERE = (rowval = 1 AND
STOP; colval IN (0 1)))
RUN; END=eof;
%$IF &report = YES $THEN BY col_var row_var NOTSORTED;
$print_summary table (out=&out) ; DO i = 0 TO 1;
$MEND freginfo; IF colval=i THEN DO;
n _col [colval] = Frequency ;
p_col [colval] = ColPercent ;
END;
END;
coll val=0;

col2_val=1;
IF LAST.row_var THEN DO;
OUTPUT _ c;
ncoll=.;n _col2=.;p coll=.;p_col2=.;
END;

RETAIN n_coll n_col2 p coll p_col2 ; RUN;
DATA _ chi (KEEP = col_var row_var prob) ;
SET _ chi (WHERE=(SUBSTR(statistic,1,6) =
"Mantel")); RUN;

DATA _ rrisk (KEEP = col var row_var OddsRatio

UpperCl LowerCl) ;
SET __rrisk (WHERE= (SUBSTR (studytype, 1, 4)
"Case")) ;
RENAME Value = OddsRatio; RUN ;
PROC SORT DATA=__ cC;
BY col_var row_var; RUN;
PROC SORT DATA:__Chi;
BY col var row var; RUN;
PROC SORT DATA=__ rrisk;
BY col_var row_var; RUN;
DATA &out;
MERGE ¢ _ chi rrisk;
BY col_var row_var;
FORMAT coll_val col2 val _ny.;

LABEL
col_var = "Name of Column Variable"
col label = "Label of Column Variable"
coll_val = "lst Value of Col Variable"
col2_val = "2nd Value of Col Variable"
row_var = "Name of Row Variable"
row_label = "Label of Row Variable"
n_coll = "Frequency of Column 1 cell"
n_col2 = "Frequency of Column 2 cell"
p_coll = "Percent of Column 1 cell"
p_col2 = "Percent of Column 2 cell"
Prob = "Mantel-Haenszel Chi-Square"
OddsRatio = "Odds Ratio"
LowerCL = "95% Lower Confidence Limit"
UpperCL = "95% Upper Confidence Limit";
RUN;

$MEND summaryset;

$MACRO freginfo (data = syslast
, out =

, rowvars

, colvars

report =) ;

,
$LET data = &data ; *force evaluation of DATA;

$LET report = %upcase (&report) ;
%$IF %$SYSFUNC (EXIST (&out)) S$THEN %DO;
PROC DATASETS;
DELETE &out;
QUIT; RUN;
%END;
DATA _NULL_;
SET &data;
ARRAY row {*} &rowvars;
ARRAY col {*} &colvars;
CALL SYMPUT ("dimrow",DIM (row)) ;
CALL SYMPUT ("dimcol",DIM(col)) ;
STOP; RUN;
%$buildset ($STR (&data)) ;
%IF &report = YES %$THEN
$print_summary table (out = &out) ;
$MEND freqginfo;

7

APPENDIX 4: This program provides the user with the code
to call each of the three methods in appendix 1 to appendix 3

TITLE "Medical Conditions crossed with Symptoms";

PROC FORMAT;
VALUE ny 0 = "0) No"
1 ="1) Yes";
RUN;
%let METHOD = Macro Array;

*See Appendix 1;

*%let METHOD = Call_ Execute; *See Appendix 2;

*%let METHOD = One_Freq;

*See Appendix 3;

$INCLUDE "d:\sas\macro library\&METHOD. .SASINC";

$freginfo (data = mydata
, out = summary

, rowvars = dizziness--absentminded

, colvars = medcondl-

, report = yes);

medcond40

APPENDIX 5: Example Macro to print a summary report
using DATA _NULL_ with PUT statements.

$MACRO print summary table (out
DATA NULL_ ;
SET &out;
LENGTH ret_var $ 32;
FILE PRINT;
IF N =1 THEN pagebreak=0;
IF ret var®=col var THEN DO;

IF page_break=2 THEN PUT _
IF page_break=2 THEN page |

page_ break+1;

PUT;

PUT @29 col_label;

PUT @32 coll_val _ny. @44

=);

PAGE_;
break=0;

coll val _ny.

@57 ' CHI Odds 95%'
'Confidence Limit ';

PUT @32 ' n % n % '
'Square Ratio Lower !
'Upper';

PUT %$DO i = 1 %TO 89; '-' %END;;

END;

PUT row_label @29 n_coll 5.

0 @36 p_coll

5.2 @42 n_col2 4.0 @48 p_col2 5.2
@57 prob @66 oddsratio 5.2 @75
lowercl 5.2 @84 uppercl 5.2;
ret_var=col_var;
RETAIN ret var page break;

RUN;
$MEND print_ summary table;

FIGURE 4: shows the PROC CONTENTS output of the summary dataset. Each of the three methods described in this paper will produce
the exact same summary dataset as shown below. It is important to note that the summary dataset is the end product of the design of the
macros. The summary table provided in Figure 5 is an example of how to report the statistics in the summary dataset.

Dataset: Work.summary Observations: 920
————— List of Variables and Attributes-----

Variable Type Len Pos Format Label

2 col_var Char 32 112 Name of Column Variable

3 col_ label Char 50 144 Label of Column Variable

5 coll val Num 8 0 _NY. 1st Value of Col Variable
6 col2_val Num 8 8 _NYy. 2nd Value of Col Variable
1 row_var Char 32 80 Name of Row Variable

4 row_label Char 50 194 Label of Row Variable

7 n coll Num 8 16 Frequency of Column 1 cell
8 n_col2 Num 8 24 Frequency of Column 2 cell
9 p_coll Num 8 32 Percent of Column 1 cell
10 p_col2 Num 8 40 Percent of Column 2 cell
11 Prob Num 8 48 PVALUEG6 . 4 Mantel-Haenszel Chi-Square
14 oddsRatio Num 8 72 Odds Ratio
12 LowerCL Num 8 56 10.4 95% Lower Confidence Limit
13 Uppercl Num 8 64 10.4 95% Upper Confidence Limit

FIGURE 5: shows an example summary table that has been generated using PUT statements in DATA _NULL_. The original SAS Output
listing required 1 page per 2x2 crosstab. We can see, in this figure, that one table can be created for each medical condition that is crossed
with all 23 symptoms. This will result in 40 tables. Two of the 40 tables can be printed on each page of the summary report, which reduces 46
pre-summarization pages of output down to just one page of summary statistics. A summary report, such as this, can be much easier to
review

Medical conditions crossed with symptoms
Diagnosed with Arthritis
0) No 1) Yes CHI Odds 95% Confidence Limit
n % n % Square Ratio Lower Upper
Dizziness episodes 690 28.89 62 43.97 <.0001 1.93 1.36 2.72
Nervous episodes 1374 57.54 80 b56.74 0.8519 0.97 0.69 1.36
Speech problems 149 6.24 17 12.06 0.0067 2.06 1.21 3.51
Nausea episodes 759 31.78 46 32.62 0.8352 1.04 0.72 1.49
Depression episodes 757 31.70 47 33.33 0.6858 1.08 0.75 1.55
Low energy episodes 1491 62.44 91 64.54 0.6164 1.09 0.77 1.56
Smell/taste change episodes 184 7.71 15 10.64 0.2089 1.43 0.82 2.49
Sweating episodes 480 20.10 39 27.66 0.0308 1.52 1.04 2.23
Appetite loss episodes 509 21.31 34 24.11 0.4317 1.17 0.79 1.75
Headache episodes 1675 70.14 93 65.96 0.2925 0.82 0.58 1.18
Fast heart rate episodes 412 17.25 30 21.28 0.2216 1.30 0.85 1.97
Numb hands/feet episodes 667 27.93 64 45.39 <.0001 2.14 1.52 3.02
Balance problems 317 13.27 37 26.24 <.0001 2.32 1.57 3.44
Irritable/angry episodes 997 41.75 61 43.26 0.7236 1.06 0.75 1.50
Lose consciousness episodes 73 3.06 10 7.09 0.0090 2.42 1.22 4.80
Trembling episodes 329 13.78 26 18.44 0.1215 1.41 0.91 2.20
Blurred vision episodes 287 12.02 27 19.15 0.0126 1.73 1.12 2.68
Insomnia episodes 1091 45.69 73 51.77 0.1589 1.28 0.91 1.79
Concentration problems 577 24.16 44 31.21 0.0591 1.42 0.99 2.06
Arm/leg weakness episodes 384 16.08 50 35.46 <.0001 2.87 2.00 4.12
Night vision problems 281 11.77 26 18.44 0.0184 1.70 1.09 2.64
Twitching episodes 426 17.84 41 29.08 0.0008 1.89 1.29 2.76
Absentminded episodes 651 27.26 51 36.17 0.0217 1.51 1.06 2.16

